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This manuscript presents an interesting new framework (VARX) for simultaneously
quantifying effective connectivity in brain activity during sensory stimulation and how
that brain activity is being driven by that sensory stimulation. The reviewers thought
the model was original and its conclusion that intrinsic connectivity is largely
unaltered during sensory stimulation is very interesting, but that future use of the
model could potentially be affected by false positive conclusions. Overall, this work is
important with solid evidence for its conclusions - it will be of interest to
neuroscientists working on brain connectivity and dynamics.
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Abstract
Summary

Sensory stimulation of the brain reverberates in its recurrent neuronal networks. However,
current computational models of brain activity do not separate immediate sensory responses
from intrinsic recurrent dynamics. We apply a vector-autoregressive model with external
input (VARX), combining the concepts of “functional connectivity” and “encoding models”, to
intracranial recordings in humans. We find that the recurrent connectivity during rest is
largely unaltered during movie watching. The intrinsic recurrent dynamic enhances and
prolongs the neural responses to scene cuts, eye movements, and sounds. Failing to account
for these exogenous inputs, leads to spurious connections in the intrinsic “connectivity”. The
model shows that an external stimulus can reduce intrinsic noise. It also shows that sensory
areas have mostly outward, whereas higher-order brain areas mostly incoming connections.
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We conclude that the response to an external audiovisual stimulus can largely be attributed
to the intrinsic dynamic of the brain, already observed during rest.

Introduction

The primate brain is highly interconnected between and within brain areas. This includes areas
involved in sensory processing 1     . Strikingly, most computational models of brain activity in
response to external natural stimuli do not take the recurrent architecture of brain networks into
account. “Encoding” models often rely on simple input/output relationships such as general linear
models in fMRI 2     , or temporal response functions in EEG/MEG 3     . Interactions between brain
areas are captured often just as instantaneous linear correlations that are referred to as
“functional connectivity” when analyzing fMRI activity 4     . Others capture synchronous activity in
different brain areas by measuring phase locking of electrical neural signals 5     . However, these
measures of instantaneous correlation do not capture time delays inherent in recurrent dynamics.
By taking temporal precedence into account with recurrent models the “Granger-causality”
formalism can establish directed “connectivity”. This has been used to analyze both fMRI and
electrical activity 6     –11     .

The concept of functional connectivity was first developed to analyze neural activity during rest,
where there are no obvious external signals to stimulate brain activity. But it is now also often
used during passive exposure to a stimulus, such as watching movies 12     –15     . A general
observation of these studies is that a portion of the functional connectivity is preserved between
rest and stimulus conditions, while some aspects are altered by the perceptual task, e.g. 12     ,16     .
This should be no surprise, given that an external stimulus can drive multiple brain areas and
thus induce correlations between these areas 17     . Removing such stimulus-induced correlations
by controlling for a common cause is standard practice in statistical modeling and causal
inference 18     . However, in studies that focus on functional connectivity in neuroscience,
stimulus-induced correlations are often ignored when analyzing the correlation structure of
neural signals. A notable exception is “dynamic causal modeling” 19     . In this modeling approach
the “input” can modulate functional connectivity. This is particularly important in the context of
active behavioral tasks, where the common finding is that correlation structure changes with task
states 20     .

In this study we are interested in “passive” tasks such as rest and movie watching. We will ask
here whether, after removing stimulus-induced correlations, the intrinsic dynamic itself is
preserved. Attempts to factor out the effects of the stimulus come from work on response
variability. For instance, fMRI shows that variability across trials in motor cortex is due to an
intrinsic “noise” which is linearly superimposed on a more reliable response to a simple motor
action 21     . Stimulus-response variability in the visual cortex has been attributed to variability of
ongoing dynamic 22     ,23     . Some studies of electrical recordings from the visual cortex show that
correlations of spiking activity between different recording locations are largely unaffected by
visual stimulation 24     . Yet, other studies show that visual input affects local correlation in the
visual cortex 25     –27      and across the brain 28     .

The technical challenge when addressing these questions is to separate the direct effect of the
stimulus from the intrinsic recurrent dynamic. Here we propose to separate these effects by
modeling them simultaneously with the simplest possible model, namely, linear intrinsic effects
between brain areas and linear responses to extrinsic input. A mathematical model that
implements this is the vector-autoregressive model with external input (VARX). This model is well
established in the field of linear systems 29      and econometrics 30     , where it is used to capture
intrinsic dynamics in the presence of an external input. The VARX model is an extension of the
VAR model that is routinely used to establish “Granger-causality” in neuroscience (cited above). In
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the VARX model, Granger analysis provides a measure of statistical significance for the intrinsic
dynamic as well as the external input, in addition to directionality for the intrinsic effects, all as
part of a single model 31     .

While linear systems are an inadequate model of neuronal dynamics, they remain an important
tool to understand neural representations because of their conceptual simplicity. They are
routinely used for event-related fMRI analysis but also for “encoding models” to link non-linear
features of continuous stimuli to neural responses. They have been used to analyze responses to
video in fMRI 32     , to speech in EEG 33      or to audio in intracranial EEG 34     . They are even used
to analyze the encoding in deep-neural network models 35     . Here we use a classic linear model to
combine two canonical concepts in neuroscience, which have thus far remained separated,
namely, that of “encoding models” 32      and “functional connectivity” models 6     . We will use this
to analyze whole-brain, intracranial EEG in human subjects at rest, and while they watch videos.
Our main finding is that the recurrent dynamic observed during rest is only minimally altered by
watching videos. Instead, the brain’s response to naturalistic stimulus appears to be substantially
shaped by the same endogenous dynamic of the brain observed during rest.

Methods

The vector-autoregressive model with external input (VARX) falls within a group of well-
established linear models used in neuroscience (see Table 1     ). Prominent examples in this group
are the generalized linear model (GLM), dynamic causal model (DCM) and temporal response
functions (TRF). While these models have been extensively used for neural signal analysis, the
VARX model has not. We start therefore with a brief introduction. For more details please refer to
31     

VARX model
The VARX model explains a time-varying vectorial signal y(t) as the result of an intrinsic
autoregressive feedback driven by an innovation process e(t) and an extrinsic (We adopt here the
terminology of “Intrinsic” and “extrinsic” as it is commonly used in neuroscience and psychology.
In system modeling and econometrics, where the VARX model is prevalent, the more common
terminology is “endogenous” and “exogenous”, meaning effectively the same thing) input x (t):

A* and B* represent convolutions with appropriately sized matrices of causal filters with lengths
na and nb respectively. The innovation is assumed to be uncorrelated in time and has therefore a
uniform spectrum. The recurrence in A modifies this spectrum to match the spectrum of y(t),
thereby capturing the intrinsic recurrent dynamic. The filter B injects a filtered version of the
extrinsic input x (t) into this recurrent dynamic. The role of each of these terms for brain activity
is explained in Fig. 1     .

Filter matrices A and B are unknown and can be estimated from the observed history of x (t) and
y(t)using ordinary least squares (OLS). The objective for the optimal model is to minimize the
power of the unobserved innovation process e(t):
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Table 1

Models commonly used in neural signal analysis
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Figure 1

VARX model of the brain:

A) Block diagram of VARX model. y(t)represents observable neural activity in different brain areas, x (t)are observable
features of a continuous sensory stimulus, A represent the recurrent connections within and between brain areas (intrinsic
effect), and B captures the transduction of the sensory stimuli into neural activity and transmission to different brain areas
(extrinsic effect). The diagonal term in A captures recurrent feedback within a brain area. Finally, e(t) is unobserved intrinsic
“random” brain activity. B) Example of input stimulus features x(t). C) Single channel examples of neural signal y(t). D)
Examples of moving-average response filters B. E) Effect size R for the “connections” captured by auro-regresive filters A.
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Granger analysis
The innovation is also the prediction error, for predicting y(t) from the past y(t−1) and input x (t).
In the Granger formalism the prediction error is calculated with all predictors included (error of
the full model, σf) or with individual dimension in y(t−1)or x (t)omitted (error of the reduced
models, σr) 36     . To quantify the “effect” of the specific dimension one can take the ratio of these
errors 37      leading to the test statistic D known as the “deviance”. When the number of samples is
T large, the deviance follows the Chi-square distribution with cumulative density F, from which
one can compute a p-value:

The p-value quantifies the probability that a specific connection in A or B is zero. The
“generalized” R 2      38      serves as a measure of effect size, capturing the strength of each
connection (D, p and R can be computed for each connection in matrix A or B). While this Granger
formalism is well established in the context of estimating, A i.e. VAR models, to our knowledge, it
has not been used in the context of estimating B, i.e. VARX or TRF models.

Overall system response
The overall brain response to the stimulus for the VARX model is given by the system impulse
response (written here in the z-domain, or Fourier domain):

What we see here is that the system response H is factorized into an autoregressive (AR) filter and
A a moving average (MA) filter B. When modeled as a single MA filter, the total system response
has been called the “multivariate Temporal Response Function” (mTRF) in the neuroscience
community 39     . We found that the VARX estimate of H is nearly identical to the estimated mTRF
31     . In other words, B and A are a valid factorization of the mTRF into immediate extrinsic versus
recurrent intrinsic effects.

Note that the extrinsic effects captured with filters B are specific (every stimulus dimension has a
specific effect on each brain area), whereas the endogenous dynamic propagates this initial effect
to all connected brain areas via matrix, A effectively mixing and adding the responses of all
stimulus dimensions. Therefore, this factorization separates stimulus-specific effects from the
shared endogenous dynamic.

Relation to common neural signal models
The VARX model fits naturally into the existing family of models used for neural signals analysis
(Table 1     ). While they differ in the formulation and statistical assumptions, their defining
equations have a similar general form with the following attributes:

An important simplifying assumption for the mTRF, VAR, and VARX models is that y(t) is
observable with additive normal distributed innovation. As a result, parameter estimation can use
ordinary least squares, which is fast to compute. In contrast, GLM, DCM, and some variants of VAR
models assume that y(t) is not directly observable, and needs to be estimated in addition to the
unknown parameters A or B. The same is true for the basic “output error” model in linear systems
theory 29     . This requires slower iterative algorithms, such as expectation maximization. As a
result, these models are often limited to small networks (The original DCM proposed for fMRI
included an added complication of modeling the hemodynamic response, which amounts to
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adding a temporal filter to each output node and prior to adding observation noise.) of a few
nodes to test specific alternative hypotheses 42     . In contrast, here we will analyze 100-200
channels per subject to draw general conclusions about overall brain organization.

Validation of connectivity estimate
on whole-brain neural mass model
To validate the interpretation that A is a model of “connectivity”, we simulated neural activity for
a whole-brain neural mass model 43     . We used the default model of the neurolib python library
(“ALNModel”), which is a mean-field approximation of adaptive exponential integrate-and-fire
neurons. This model can generate simulated mean firing rates in 80 brain areas based on
connectivity and delay matrices determined with diffusion tensor imaging (DTI). We used 5 min of
“resting state” activity (no added stimulus, simulated at 0.1ms resolution, subsequently
downsampled to 100Hz). The true connectivity matrix from DTI (Fig. 2A     ) appears to be similar
to the effect size estimate R for the recurrent connections A in the VARX model with no input (Fig.
2B     ). Following 44      we compare the two as a scatter plot (Fig. 2C     ) and observed a Spearman
correlation of 0.69. For comparison, we also used the sparse-inverse covariance method to recover
structural connectivity from functional connectivity. This method is more sensitive than others in
detecting network connections 45      and uses the graphical lasso algorithm 46     . The resulting
connectivity estimate (Fig. 2D     ) only achieves a Spearman correlation of 0.52. We note that the
structural connectivity determined with DTI is largely symmetric. When enhancing the asymmetry
the VARX model is not as accurate, but correctly recovers the direction of the asymmetry (Fig. S1).

Intracranial EEG recordings and stimulus features
We analyzed intracranial EEG and simultaneous eye-tracking data recorded from patients (N=21,
mean age 37.81 years, age range 19-58 years, 9 female, Table S1) during rest and while they
watched various video clips. Three patients underwent two implantations and recordings at
different times resulting in a total of 24 recording sessions with a total of 4,962 recording channels.
The video clips included animations with speech (‘Despicable Me’, two different clips, 10 min each,
in English and Hungarian), an animated short film with a mostly visual narrative and music,
shown twice (‘The Present’, 4.3 min), and three clips of documentaries of macaques (‘Monkey’, 5
min each, without sound) 48     . In addition to the clips from the previous analysis, we included a
movie clip of abstract animations (‘Inscapes’, 10 min) 49     , and an eyes-open resting state with
maintained fixation (‘Resting state’, 5 min). In total, we recorded up to 59.3 minutes of data for
each patient (Table S1). Two patients did not complete both movie watching and resting state
(Pat_5 & Pat_16) and were not included in the analysis that compares the two conditions.

Neural signals were preprocessed as previously described to reduce noise 48     . We re-reference
signals in a bipolar montage to ensure analysis of local activity. We analyze local field potentials
(LFPs) and broadband high-frequency activity (BHA) power. BHA is the power of the signal
bandpass filtered between 70-150Hz. We perform analysis on both signals after downsampling to
60Hz. Example traces of y(t) for LFP and BHA are shown in Fig. 1B&C     .

We extract three features of the movies that serve as external inputs for the VARX model: fixation
onset, film cuts and sound envelope (Fig. 3G     ). Fixation onset and film cuts are represented in
x(t) as pulse trains with pulses occurring at the time of these events 48     . Sound envelope is
computed as the absolute value of the Hilbert transform of the sound from the movie files and
varies continuously. The envelope is downsampled to 60 Hz. All videos and resting state include
fixations. The video ‘Inscapes’ and resting state do not include film cuts as external input. The
‘Monkey’ video clips and resting state do not include the sound envelope as input features, but do
include fixation onsets. When a feature is not available it is replaced with features from a
different recording. Therefore, the statistics of the feature are consistent, but not aligned to the
neural recording. When comparing models with different features we always keep the number of
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Figure 2

Connectivity of stimulated neural mass model for the whole brain, and estimated VARX model.

A) True structural connectivity used to simulate neural activity using a neural mass model with the neurolib python toolbox.
Connectivity is based on diffusion tensor imaging data between 80 brain areas (called Cmat in neurolib). Here showing the
square root of the “Cmat’’ matrix for better visibility of small connectivity values. B) Effect size estimate R for the A matrix of
the VARX model on the simulated data. C) Comparison of true and VARX estimate of connectivity. D) Absolute value of the
sparse-inverse functional connectivity (estimated using graphical lasso 47     ).
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input variables consistent between models to avoid a bias by the number of free parameters of the
model. Features that are not considered in the analysis are shuffled in time by a circular shift by
half the duration of the signals.

The VARX models were fitted to data with the matlab version of the code 31     . For all analyses we
use filters of 600 ms length for inputs (nb=36 samples for VARX models, L=36 samples for
mTRFmodels). Delays for connections between channels are set to 100ms (na=6 samples) for both
LFP and BHA signals. Increasing the number of delays na, increases estimated effect size R,
however, larger values lead to overfitting, i.e. less significant connections (Fig. S1). Values around
na=6 samples achieve a balance between goodness of fit and overfitting (Fig. S2). The
regularization parameter was set to λ=0.3.

Connectivity plots are created with nilearn’s plot_connectome() function (Fig. 4     ) 50     . We plot
only significant connections (p<0.001). Surface plots of T1w/T2w ratios and directionality of
connections are created using the field-echos repository 51     ,52     . T1wT2w maps 53      are
obtained from the neuromaps repository 54     ,55     , and transformed to the freesurfer surface
using the fslr_to_fsaverage() function 56     ,57     .

The length of responses for Fig. 5      is computed as the ‘peak widths’ argument of Matlab’s
findpeaks() function. Power is computed as the average of the instantaneous power, i.e. the square
of the weight at each delay of the filters.

Data and code availability
The raw data reported in this study cannot be deposited in a public repository because of patient
privacy concerns. To request access, contact The Feinstein Institutes for Medical Research, through
Dr. Stephan Bickel. In addition, processed datasets derived from these data have been deposited at
https://doi.org/10.17605/OSF.IO/VC25T      and are publicly available as of the date of publication.

All original code has been deposited at https://github.com/MaxNentwich/varx_demo     .

Results

Extrinsic input leads to spurious intrinsic connectivity
To determine the effect of the extrinsic inputs on connectivity estimates we either fit a VARX
model or a VAR model (i.e. a VARX model with no external input). We analyze LFP data on all
available recordings, movies and resting state for all N=24 recording sessions. As extrinsic inputs
we included film cuts, fixation onset, and sound envelope. VAR models contain the same external
inputs as the VARX model, but the time alignment is disrupted by a circular shuffle. This keeps the
number of parameters in different models constant and ensures the inputs have the same
covariance structure. We found a similar connectivity structure for the estimated VAR and VARX
models (Fig. 3A      and 3B     ). However, they vary systematically in the number of significant
recurrent connections A (those with p<.0001, Fig. 3D     ), which drops when adding inputs
(median=-8.7*10−4, p<.0001, N=24, Wicoxon). The effect sizes R also significantly decreases in the
VARX model (Fig. 3E     , median=-1.9*10−5, p<.0001, N=24, Wicoxon). Therefore, accounting for the
external input removes spurious “connections”. We also analyzed how much each of these inputs
contributed to this effect (Fig. 3F     ). Out of the three input features considered, models including
fixations and cuts decrease effect size more than models with sound envelope (fixations vs. sound,
medianΔR=-1.0*10−5, p<.0001, N=24; cuts vs. sound: median ΔR=-3.8*10−6, p<.0001, N=24; Wilcoxon,
uncorrected). The model including the combination of all three features has a smaller effect size R
for A than models with any individual input feature (all vs. fixations: median ΔR=-6.5*10−6,
p<.0001, N=24; all vs. cuts: medianΔR=-1.2*10−5, p<.0001, N=24; all vs. sound: medianΔR=-1.9*10−5,

https://doi.org/10.7554/eLife.104996.1
https://doi.org/10.17605/OSF.IO/VC25T
https://github.com/MaxNentwich/varx_demo


Maximilian Nentwich et al., 2025 eLife. https://doi.org/10.7554/eLife.104996.1 10 of 27Maximilian Nentwich et al., 2025 eLife. https://doi.org/10.7554/eLife.104996.1 10 of 27

Figure 3

Spurious intrinsic connectivity in A is removed when
modeling the effect of exogenous input with B.

Comparison of VARX model with and without inputs. A) p-values for each connection in A for VARX model with inputs on one
subject (Pat_1); B) for VARX model without inputs; C) difference. Both models are fit to the same data. D) Difference of
fraction of significant recurrent connections between VARX models with and without inputs. E) Mean difference in R over all
electrodes between VARX models with and without inputs. Each point is a subject. Dashed line is the median across subjects.
F) Difference between the VARX models with different input combinations and the VARX model without inputs. Red line shows
mean across patients, black lines the 95% confidence interval. Negative values indicate a decrease in connectivity strength
when exogenous input is accounted for.
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Figure 4

Recurrent connectivity A during movies does not detectably differ from rest.

Effect size R for each connection in A. A) VARX model of 5 minutes of LFP recordings during movie watching, with sound
envelope, fixation onsets and film cuts as input features. B) VARX model during resting fixation with fixation onset as input
feature. C) Difference in the number of significant connections (p<.0001) between movie and rest. D) Difference in mean
effect size across all channels between movie and rest. Dots represent subjects, dashed line the median across subjects. Axial
view of significant connections in E) the movie task, F) resting state, and G) the difference between movies and resting state.
Dots show the location of contacts in MNI space. Lines show significant connections between contacts. For plotting purposes
connections in the upper triangle are plotted and asymmetries ignored. Only channels with p-values < 0.001 in both
conditions are plotted.

Figure 5

Impulse response models.

A) Immediate responses B to fixation onset are weaker and shorter than B) the overall system response H. Significant
responses of select channels in for one example patient. C) Power and D) mean length of responses in significant channels
for all patients. Each line is a patient. Channels with the strongest responses are shown in panels A&B. Responses to fixation
onset in all significant channels, as well as auditory envelope and film cuts are shown in Figure S9.
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p<.0001, N=24; Wilcoxon, uncorrected). Thus, adding more input features further reduces the
strength of intrinsic “connections”. These results are also reflected in the analysis of BHA signals
(Fig. S3).

Recurrent connectivity unchanged during movies and rest
Next we compared intrinsic “connectivity” between movie watching and rest (Fig. 4A-D     ). In the
rest condition subjects have a fixation cross on a gray background. This obviously reduces the size
and number of saccades as compared to movie watching, but does not abolish them (Fig. S4). We
therefore use a VARX model including fixation onset as extrinsic variable in both cases. Movies
include film cuts and the sound envelope as external inputs. To control for the number of free
parameters, we include copies of the film cut and sound envelope features from the movies to the
resting state model. Remarkably, the number of significant recurrent connections in A were not
detectably different between movie watching and rest (Fig. 4C     , median=-0.0019, p=0.19, N=22,
Wilcoxon), as is the effect size (Fig. 4D     , median=-9*10−5, p=0.14, N=22, Wilcoxon). One caveat to
this conclusion is that the signal we analyzed was only 5 minutes long for the movie and rest
conditions, and longer records may have revealed small differences. However, even on 5 minutes
of data we observe a decrease in R values when including external inputs (Fig. S5). Connectivity of
BHA between movie and rest does also not differ significantly (Fig. S6). Using different segments of
movies, in some cases we find a small reduction of significant connections in movie watching
compared to resting state conditions (Fig. S7). However, overall, differences in the intrinsic
connectivity between movie and rest, if they exist, are less systematic than the effect of the
stimulus.

Recurrent dynamic enhances and prolongs stimulus responses
We also compared the immediate exogenous effect B with the total system response H, which
includes the additional effect of the recurrent dynamic A. We estimate B with the VARX model (Fig.
5A     ) on data during video watching, and estimate the total response H directly using temporal
response functions (Fig. 5B     ). Both models include fixation onset, film cuts and sound envelope
as external inputs. We compare the power and length of filters from both models (Fig. 5C-D     ).
We compare responses in channels with significant effects of B (FDR correction, α=0.05). We see
that the total response fixation onset is significantly stronger (Fig. 5C     , medianΔ=-5.4*10−5,
p<.0001, N=23, Wilcoxon) and longer than the immediate effect B (Fig. 5D     , medianΔ=-21.72ms,
p<.0001, N=23, Wilcoxon). The same effect is observed for other input features and for BHA
responses (Fig. S8). This suggests that the total response of the brain to these external inputs is
dominated by the recurrent dynamic of the brain.

Results are similar for VARX models of BHA and LFP
We repeated the same analyses of Figures 3     -5      with broadband high frequency activity (BHA).
While LFP are thought to capture dendritic currents, BHA is correlated with neuronal firing rates
in the vicinity of an electrode. Generally we find a more sparse recurrent connectivity for BHA as
compared to LFP (compare Fig. 3     &4      with Fig. S3&S6). Perhaps this is expected, given that LFP
covers a broader frequency range. Regardless of this overall difference, we find similar results
when analyzing BHA with the VARX model. Namely, taking the extrinsic input into account
removed stimulus-induced intrinsic “connections” (Fig. S3); the resulting model of the recurrent
dynamic is indistinguishable between watching movies and rest (Fig. S6); and responses to the
stimulus are stronger and more prolonged when separately modeling the effect of recurrent
connectivity (Fig. S8). In the Discussion section we will argue that some of these results are
expected in general when decomposing the total system response into extrinsic and intrinsic
effects. What we did not necessarily expect is that the intrinsic dynamics is similar during movies
and rest for both LFP and BHA.

https://doi.org/10.7554/eLife.104996.1
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Intrinsic “noise” in BHA is reduced by external stimulus
So far we have discussed the mean response captured by B and the recurrent activity mediated by
A. We now want to analyze whether the external input modulates the variability of the internal
dynamic. As a metric of internal variability we measured the power of the intrinsic innovation
process e(t). For the LFP signal we see a drop in power during movies as compared to rest, for both
the original signal y(t) (Fig. S10A) and the model’s innovation process e(t) (Fig. S10B). Notable is the
stronger oscillatory activity during rest (Fig. S10A). In this example we see a drop in power in the
theta/alpha band (5-11 Hz) during movie watching across all electrodes (Fig. S10A, dotter lines). We
observe similar narrow-band drop in power in most patients, albeit at different frequencies (not
shown). When analyzing BHA, we find no difference in power of the innovation process between
movie and rest, but we do find a drop in power relative to the overall BHA signals for some
channels (Fig. 6B     ). These channels seem to coincide with channels that responded to the
external stimuli, i.e. channels with a significant effect in B (Fig. 6A     ). If we take for each subject
the median relative power for responsive channels (median among those with p<0.0001), then we
find that relative power drops for nearly all subjects (Fig 6D     , Wilcoxon rank sum test, p=2.6e-06,
N=21). The motivation for analyzing only responsive channels comes from a simple gain
adaptation (Fig. S11). Gain adaptation keeps the power of y(t) constant, so that the extra power
injected by the stimulus implicitly reduces the relative power of the innovation process. This effect
is specific to channels receiving external input (Figl. S11D) and absent in a linear system without
gain adaptation (Fig. S11C). To demonstrate that this simple gain adaptation can explain the noise
quenching in the neural data, we simulated data with the gain adaptation model (Fig. 6C     ) using
parameters estimated for the example subject of Fig. 6A/B     .

Direction of connectivity differs with cortical hierarchy
Finally, we measured the directionality of the recurrent connections in the LFPs by analyzing the
structure of the resulting matrices R of all subjects. Columns in R represent outgoing connections,
while rows are incoming connections. Therefore, the difference of R − R T (Fig. 7A     ) averaged
along a column has positive values if a node has overall stronger outgoing connections, and
negative values if it has stronger incoming connections. We measured this directionality for each
channel across all subjects and averaged also across channels within parcels of the Desikan-
Killiany atlas (N=35 regions of interest, Fig. 7B     ) 58     . We expected this to co-vary with “cortical
hierarchy”. To test this, we compared this asymmetry metric with the T1w/T2w ratio, which
captures gray matter myelination and is used as an indirect measure of cortical hierarchy
51     ,59     . We also average T1w/T2w ratio in the same parcels of the Desikan-Killiany atlas (Fig.
7B     ). Cortical areas showing more outgoing connections (R − R T > 0) have lower T1w/T2w ratio,
which are located higher on the cortical hierarchy (Pearson’s r = 0.39, p = 0.023, Fig. 7C     ). BHA
analysis shows the same trend (Fig. S12).

Discussion

Our results suggest that intrinsic dynamics are not substantially altered during watching movies
as compared to rest. Instead, the external stimulus reverberates in the recurrent network with the
same dynamic as during rest. The duration and magnitude of response is in large part a result of
this recurrent dynamic.

Response to extrinsic input versus intrinsic dynamics
Previous literature does often not distinguish between intrinsic connectivity and extrinsic effects.
As a result, similarities and differences between rest and stimulus conditions reported previously,
do not draw a firm conclusion as to whether “functional connectivity” is preserved, e.g. 12     ,16     .
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Figure 6

For BHA, relative power of innovation vs signal drops
during movies as compared to rest in responsive channels.

A) Effect size R for extrinsic effect B in all channels for 3 input features (scene cuts, fixation onset, sound envelope). In this
example 15 electrodes had significant responses to one of the three inputs (Bonferroni corrected at p<0.01). B) Change in
relative power of innovation (dB(innovation power / signal power), then subtracting movie - rest). C) Change in relative power
of innovation in a simulation of a VARX model with gain adaptation. Here we are using the A and B filters that were estimated
on BHA on the example from panel A and B. D) Median of power ratio change across all subjects, contrasting responsive vs
non-responsive channels.

Figure 7

Recurrent connectivity of LFP is directed from sensory to higher-order areas.

A) Difference of s R − R T howing asymmetric directed effects. Dashed lines indicate regions of interest in the Desikan-Killiany
atlas. B) Mean directionality across patients and T1w/T2w ratio are averaged in parcels of the Desikan-Killiany atlas. C) Mean
directionality is correlated with cortical hierarchy, estimated with the T1w/T2w hierarchy.
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By systematically factoring out the effect of the external input we conclude here that the intrinsic
dynamic is unaltered. If one fails to factor out the effect of the stimulus, one may mistake the
stimulus-induced correlations for changes in “functional connectivity”.

In this work we focused on “passive” tasks, i.e. resting with gaze on a fixation point, versus
watching movies without any associated tasks. We did not analyze data during an active task
requiring behavioral responses. The literature on active tasks emphasizes “state change” in
functional connectivity. 14     ,20     ,60      Efforts to factor out task-evoked activity when computing
functional connectivity concord with our conclusions that connectivity is inflated by a task 17     .
Nevertheless, we hesitate extrapolating our findings to active tasks, as we have not analyzed such
data.

Conventional “encoding” models, such as temporal response functions, capture the total response
H of the brain to an external stimulus. Here we factored this into a moving average filter B,
followed by and autoregressive filter A. The important observation is that this intrinsic dynamic
governed by A does not change during stimulus processing. Arguably then, the role of the initial
responses B is to shape the input to be processed by the existing intrinsic dynamic. This
interpretation is consistent with the view of “the brain from the inside out” advocated by György
Buzsáki 61     . In this view, learning of a stimulus representation consists in learning a mapping of
the external stimulus to an existing intrinsic dynamic of the brain.

Similar findings for LFP and BHA
We found a more sparse recurrent connectivity for BHA as compared to LFP. This may be expected
because correlations in lower frequencies (that dominate LFPs) reaches over longer distances
compared to correlations in higher frequencies (e.g. Muller et al., 2016). BHA has been linked to a
mixture of neuronal firing and dendritic currents 62     , in contrast to LFP, which is thought to
originate from widespread dendritic currents. Despite the observed differences in sparsity, for
both LFP and BHA we found that modeling the recurrent dynamic removed spurious intrinsic
connections. Removal of spurious effects when controlling for a common cause is a generic
finding in multivariate statistical models. We also found for both LFP and BHA that the duration
and strength of stimulus responses can be largely attributed to the recurrent dynamic. Arguably,
this is a generic feature of an autoregressive model, as it more readily captures longer impulse
responses. However, the extrinsic filters B in principle have an advantage as they can be fit to each
stimulus and brain location. In contrast, the recurrent filters A are constrained by having to
capture a shared dynamic for all stimulus dimensions. Thus, the predominance of the recurrent
dynamic in the total system response is not a trivial result of the factorization into intrinsic and
extrinsic effects. Finally, we did not necessarily expect that the intrinsic connectivity is preserved
between movie and rest in both LFP and BHA. This consistency may be due to a variety of
processes that are constant across conditions, such as internal thought, body and eye movements.
Active sensing through eye movements, for example, influences activity in a global network
63     ,64     , and likely accounts for part of the common source of correlations across conditions.

Stimulus-induced reduction of noise in the intrinsic activity
One difference we did find between LFP and BHA is the intrinsic innovation process, i.e. the
internal sources of variability or “noise”. For both BHA and LFP we saw a drop in the magnitude of
signal fluctuations during the movie watching condition. For the BHA but not the LFP, this was
explained as a drop in intrinsic noise. Specifically, for BHA there was less relative power in the
intrinsic “noise” for channels that are responsive to the stimulus. This is consistent with the notion
that response variability is due to variability of intrinsic activity 22      which is found to decrease
across the brain with the onset of an external stimulus 65     . This type of noise quenching has been
associated with increased attention 66      and improved visual discrimination performance 67     .
The effect we found here can be explained by a VARX model with the addition of a divisive gain
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adaptation mechanism that keeps the total power of brain activity constant. When the input
injects additional power, this nonlinear gain adaptation implicitly reduces the contribution of the
intrinsic noise to the total power.

We also observed an overall drop in LFP power during movie watching. This phenomenon was
strongest in oscillatory bands, with frequencies in theta to beta band differing across subjects. In
scalp EEG, noise quenching is associated with a similar overall drop in power with the stimulus
66     . This quenching of neural variability was also found to reduce correlation between brian
areas for fMRI and neural spiking 26     . Both fMRI and neural spiking correlated with BHA 68     .
This is at odds with our finding that intrinsic connectivity in BHA does not change significantly
between movie and rest. However, we can not rule out such differences on longer recordings.

Stimulus features
During the movie and rest periods, we utilized fixation onset to capture activity that is time-locked
to visual processing because subjects move their eyes even during rest. We also incorporated the
sound envelope, a prominent feature known for capturing the dominant audio-induced variance
in scalp EEG 33     . In addition, we included film cuts as features, as we had previously
demonstrated that they dominate the response in the BHA across the brain 48     . While other basic
visual features such as overall optic flow or fixations on faces elicited responses in the BHA, their
contribution was relatively smaller. The analysis is not limited to these few features, and future
research should explore which stimulus features capture variance in the data and how they affect
the apparent intrinsic connectivity. There is a substantial body of literature on encoding models of
semantic features, where nonlinear features of a continuous natural stimulus are extracted and
then linearly regressed against fMRI 69     ,70      or EEG 71     . This work can be directly replicated
with the VARX model which further models the intrinsic connectivity.

Alternative approaches
The traditional VAR model has been used extensively in neuroscience to establish directed
“Granger causal” connections 41     . This approach has been very fruitful and found numerous
extensions, e.g. 10     ,11     . However, these model implementations do not specifically account for
an external input.

A few methods have attempted to model the effect of varying task conditions on functional
connectivity, mostly in the analysis of fMRI. One approach is to first model the task-evoked
responses, equivalent to estimating B alone, and then compute the conventional “functional
connectivity”, i.e. the correlation matrix, on the residuals e(t) 72     . Others suggested to estimate B
in multiple time windows and then estimate a “task related functional connectivity” by correlating
the multiple B over time windows 73     . It is not clear that these ad-hoc methods systematically
separate intrinsic from extrinsic factors.

A more principled modeling approach is “dynamic causal modeling” (DCM) 19      and extensions
thereof 74     . Similar to the VARX model, DCM includes intrinsic and extrinsic effects A and B.
However, the modeling is limited to first-order dynamics (i.e. na=na=1). Instead, the DCM includes
a multiplicative interaction of extrinsic input x(t) on the connectivity A, which does not exist in the
VARX model. This interaction has been used to explicitly model a change in intrinsic connectivity
with task conditions. Here we found that this may not be necessary for intracranial EEG. A
practical advantage of the VARX model is the assumption that the neural activity is directly
observed. Instead, many existing models assume an error in the observations, which triggers
computationally intensive estimation algorithms, typically the expectation maximization
algorithm. The same is true for the “output error” model in linear systems theory 29     . As a result,
these models are often limited to small networks (The original DCM proposed for fMRI included an
added complication of modeling the hemodynamic response, which amounts to adding a temporal
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filter to each output node and prior to adding observation noise.) to test specific alternative
hypotheses 42     . In contrast, here we have analyzed 100-200 channels per subject across the brain,
and have drawn more general conclusions about whole-brain activity.

Caveats
The lack of a significant difference in recurrent connectivity between stimulus and rest should be
interpreted with care. As usual, lack of evidence is not evidence for the lack of an effect. We saw
no change in the number of recurrent connections between movie and rest, either for the LFPs or
BHA activity. However, in individual movie segments small differences were observed (Fig. S7). It
is possible that regressing out a richer stimulus characterization would have removed additional
stimulus-induced correlation, only enhancing this small difference between movie and rest. We
were also limited to 5 minutes of data in the direct comparison of movie and resting state data.
Longer recordings might further enhance differences. Higher recurrent connectivity in the LFP
during rest would be consistent with the more synchronized state we saw in rest, as reflected by
larger oscillatory activity.

We find a correlation of DTI structural connectivity used in a model with a VARX estimate of 0.70.
That is considered a relatively large value compared to other studies that attempt to recover DTI
connectivity from the correlation structure of fMRI activity 44     . A Caveat is that this was done on
a biophysical model of firing rate, not fMRI, and we have not explored the parameters of the
model that might affect the results.

We used fixation onsets as external input, but it should be noted that they are tightly correlated in
time with saccade onsets (there is only about a 30 ms jitter between the two, depending on saccade
amplitude). While saccades are driven by visual movement, they are generated by the brain itself
and arguably could also be seen as intrinsic. The same is true for all motor behaviors, most of
which cause a corresponding sensory response, similar to the visual response following a saccade.
Including them as external input is a modeling choice we have made here, but it is important to
acknowledge that fixation onsets can therefore have “acausal” components 48     . By “acausal” we
mean a fixation-locked response that precedes the fixation onset and is due to the neural activity
leading up to the saccade and subsequent fication. Such acausal responses can be captured by the
VARX Granger formalism by delaying the input relative to the neural activity, which we have not
done here.

The correlation between the average incoming and outgoing connections and cortical hierarchy
(Fig. 7     ) is not significant when normalizing for the number of electrodes in each region of
interest. Regions in the temporal lobe with a large number of electrodes might drive this
correlation. A more fine grained analysis in these regions could be the goal of future analysis.

Conclusion
We analyzed whole-brain intracranial recordings in human subjects at rest and while they
watched videos. We used a model that separates intrinsic dynamics from extrinsic effects. We
found that the recurrent dynamic observed during rest is largely unaltered when watching
movies. Instead, the brain’s response to the audiovisual stimuli appears to be substantially shaped
by its endogenous dynamic. The reduction in intrinsic variance observed during an extrinsic
stimulus may be the result of neuronal gain adaptation.
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Reviewer #1 (Public review):

This manuscript presents an interesting new framework (VARX) for simultaneously
quantifying effective connectivity in brain activity during sensory stimulation and how that
brain activity is being driven by that sensory stimulation. The core idea is to combine the
Vector Autoregressive model that is often used to infer Granger-causal connectivity in brain
data with an encoding model that maps the features of a sensory stimulus to that brain data.
The authors do a nice job of explaining the framework. And then they demonstrate its utility
through some simulations and some analysis of real intracranial EEG data recorded from
subjects as they watched movies. They infer from their analyses that the functional
connectivity in these brain recordings is essentially unaltered during movie watching, that
accounting for the driving movie stimulus can protect one against misidentifying brain
responses to the stimulus as functional connectivity, and that recurrent brain activity
enhances and prolongs the putative neural responses to a stimulus.

This manuscript presents an interesting new framework (VARX) for simultaneously
quantifying effective connectivity in brain activity during sensory stimulation and how that
brain activity is being driven by that sensory stimulation. Overall, I thought this was an
interesting manuscript with some rich and intriguing ideas. That said, I had some concerns
also - one potentially major - with the inferences drawn by the authors on the analyses that
they carried out.

Main comments:

(1) My primary concern with the way the manuscript is written right now relates to the
inferences that can be drawn from the framework. In particular, the authors want to assert
that, by incorporating an encoding model into their framework, they can do a better job of
accounting for correlated stimulus-driven activity in different brain regions, allowing them to
get a clearer view of the underlying innate functional connectivity of the brain. Indeed, the
authors say that they want to ask "whether, after removing stimulus-induced correlations,
the intrinsic dynamic itself is preserved". This seems a very attractive idea indeed. However,
it seems to hinge critically on the idea of fitting an encoding model that fully explains all of
the stimulus-driven activity. In other words, if one fits an encoding model that only explains
some of the stimulus-driven response, then the rest of the stimulus-driven response still
remains in the data and will be correlated across brain regions and will appear as functional
connectivity in the ongoing brain dynamics - according to this framework. This residual
activity would thus be misinterpreted. In the present work, the authors parameterize their
stimulus using fixation onsets, film cuts, and the audio envelope. All of these features seem
reasonable and valid. However, they surely do not come close to capturing the full richness of
the stimuli, and, as such, there is surely a substantial amount of stimulus-driven brain
activity that is not being accounted for by their "B" model and that is being absorbed into
their "A" model and misinterpreted as intrinsic connectivity. This seems to me to be a major
limitation of the framework. Indeed, the authors flag this concern themselves by (briefly)
raising the issue in the first paragraph of their caveats section. But I think it warrants much
more attention and discussion.

(2) Related to the previous comment, the authors make what seems to me to be a complex
and important point on page 6 (of the pdf). Specifically, they say "Note that the extrinsic
effects captured with filters B are specific (every stimulus dimension has a specific effect on
each brain area), whereas the endogenous dynamic propagates this initial effect to all
connected brain areas via matrix A, effectively mixing and adding the responses of all
stimulus dimensions. Therefore, this factorization separates stimulus-specific effects from the
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shared endogenous dynamic." It seems to me that the interpretation of the filter B (which is
analogous to the "TRF") for the envelope, say, will be affected by the fact that the matrix A is
likely going to be influenced by all sorts of other stimulus features that are not included in
the model. In other words, residual stimulus-driven correlations that are captured in A might
also distort what is going on in B, perhaps. So, again, I worry about interpreting the
framework unless one can guarantee a near-perfect encoding model that can fully account
for the stimulus-driven activity. I'd love to hear the authors' thoughts on this. (On this issue -
the word "dominates" on page 12 seems very strong.)

(3) Regarding the interpretation of the analysis of connectivity between movies and rest...
that concludes that the intrinsic connectivity pattern doesn't really differ. This is interesting.
But it seems worth flagging that this analysis doesn't really account for the specific dynamics
in the network that could differ quite substantially between movie watching and rest, right?
At the moment, it is all correlational. But the dynamics within the network could be very
different between stimulation and rest I would have thought.

(4) I didn't really understand the point of comparing the VARX connectivity estimate with the
spare-inverse covariance method (Figure 2D). What was the point of this? What is a reader
supposed to appreciate from it about the validity or otherwise of the VARX approach?

(5) I think the VARX model section could have benefitted a bit from putting some dimensions
on some of the variables. In particular, I struggled a little to appreciate the dimensionality of
A. I am assuming it has to involve both time lags AND electrode channels so that you can
infer Granger causality (by including time) between channels. Including a bit more detail on
the dimensionality and shape of A might be helpful for others who want to implement the
VARX model.

(6) A second issue I had with the inferences drawn by the authors was a difficulty in
reconciling certain statements in the manuscript. For example, in the abstract, the authors
write "We find that the recurrent connectivity during rest is largely unaltered during movie
watching." And they also write that "Failing to account for ... exogenous inputs, leads to
spurious connections in the intrinsic "connectivity".

https://doi.org/10.7554/eLife.104996.1.sa1

Reviewer #2 (Public review):

Summary:

The authors apply the recently developed VARX model, which explicitly models intrinsic
dynamics and the effect of extrinsic inputs, to simulated data and intracranial EEG
recordings. This method provides a directed method of 'intrinsic connectivity'. They argue
this model is better suited to the analysis of task neuroimaging data because it separates the
intrinsic and extrinsic activity. They show: that intrinsic connectivity is largely unaltered
during a movie-watching task compared to eyes open rest; intrinsic noise is reduced in the
task; and there is intrinsic directed connectivity from sensory to higher-order brain areas.

Strengths:

(1) The paper tackles an important issue with an appropriate method.

(2) The authors validated their method on data simulated with a neural mass model.

(3) They use intracranial EEG, which provides a direct measure of neuronal activity.

(4) Code is made publicly available and the paper is written well.
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Weaknesses:

It is unclear whether a linear model is adequate to describe brain data. To the author's credit,
they discuss this in the manuscript. Also, the model presented still provides a useful and
computationally efficient method for studying brain data - no model is 'the truth'.

Appraisal of whether the authors achieve their aims:

As a methodological advancement highlighting a limitation of existing approaches and
presenting a new model to overcome it, the authors achieve their aim. Generally, the
claims/conclusions are supported by the results.

The wider neuroscience claims regarding the role of intrinsic dynamics and external inputs
in affecting brain data could benefit from further replication with another independent
dataset and in a variety of tasks - but I understand if the authors wanted to focus on the
method rather than the neuroscientific claims in this manuscript.

Impact:

The authors propose a useful new approach that solves an important problem in the analysis
of task neuroimaging data. I believe the work can have a significant impact on the field.
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